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Outline

Pulse testing reveals very important SiC device behaviors not observed
by conventional DC and RF testing.

Reverse bias diode pulse testing
Stable and unstable SiC reverse breakdown.

Forward bias diode pulse testing

These behaviors directly impact SiC power device performance & reliability. 

Rectifier reverse recovery switching transients.

Perimeter-governed device minority carrier lifetimes.
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 Pulse Test Circuit

Bias pulse is formed by discharge of semirigid coax
when Hg switch is momentarily triggered.
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V = 0 V V = 0 V

A Tale of Two Diodes
(Part 1: DC Testing)

Wafer A* Wafer B**

Epitaxial Small-Area 4H-SiC p+n Diodes

VDC BKDN = 140 V VDC BKDN = 142 V

* NASA Lewis Run #1841
J. Appl. Phys. 80, p. 1219

** NASA Lewis Run #1905
IEEE EDL 18, p. 96
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A Tale of Two Diodes
(Part 2: Reverse Bias Pulse Testing)

Wafer A
(VDC BKDN = 140 V)

Wafer B
(VDC BKDN = 142 V)
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Experiment: Subject devices to single-shot reverse-bias pulses of 
increasing amplitude until catastrophic breakdown failure occurs.
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A Tale of Two Diodes
(Part 2: Reverse Bias Pulse Testing)

Wafer A
(VDC BKDN = 140 V)

Wafer B
(VDC BKDN = 142 V)

Time (ns)

Catastrophic Device Failure,
Device Physically Destroyed!
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(c) Shot #3

Device Still Good,
Positive Temp. Coeff. Breakdown!
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Pulse Breakdown Discussion

Behavior of devices on Wafer A is unacceptable for many power applications.
• Extremely high reliability, immunity to “glitches” required for most

aerospace applications.

Differences between “unstable” Wafer A and “stable” Wafer B:

• Single epi-growth (Wafer B) vs. two-step epi growth (Wafer A).

• n-substrate (Wafer B) vs. p-substrate (Wafer A).

• SIMS revealed excess Al, N near Wafer A junction not present in Wafer B.

Exact physical mechanism still uncertain.

• Bulk failure mechanism - no evidence of surface breakdown.

Positive temperature coefficient breakdown observed only on 
          very small-area (A < 1 x 10-4 cm2) Wafer B devices.

• Elementary (1c) screw dislocations affecting breakdown???
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PN Diode Reverse Recovery*

Idealized Test Circuit Diode Reverse Recovery Current Transient

(zero inductance)

ts = Storage Time

Minority carrier (hole) lifetime τp

related to storage time ts by:

* G. Neudeck, The PN Junction Diode, 2nd Ed., Addison-Wesley Publishing, p. 111.

    
ts = τ p erf– 1 1 + 1

IR / IF

2
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Reverse Recovery Current Transients
Device Area = 8.1 x 10-3  cm2, Rs = 200 Ω

IF varied for approximately fixed IR IR varied for fixed IF

ts increases as IF increases. ts decreases as IR increases.
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Storage Time (ts) Dependence on IR/IF
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   where τ p = 300 ns
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Measured  t

s
 Data

    
ts = τ p erf – 1 1 + 1

IR / IF

2

Experimentally measured
storage time behavior
follows predicted physical
theory.

Effective minority carrier 
lifetime for this device is
300 ns (A = 8.1 x 10-3 cm2)
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Storage Times (ts) of Larger vs. Smaller Devices

Effective minority carrier lifetime decrease with decreasing area suggests
presence of significant perimeter surface recombination effects.
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Device Hole Recombination =

Top View of Diode

n- Layer

Side View of Diode

Perimeter Hole
Recombination

Bulk Hole
Recombination

p+ Layer

p+n Diode Effective Lifetime

τp Eff. = τp extracted from
reverse recovery switching
measurement ts vs. IR/IF data.

Can estimate τp Bulk  and sp Perim. from linear plot of 1/τp Eff.  vs. P/A.

   REff .A = RBulkA + RPerim.P
∆pn

τ p Eff .
A ≈ ∆pn

τ p Bulk
A + s p Perim.∆pnP

1
τ p Eff .

≈ 1
τ p Bulk

+ s p Perim.
P
A

y = b + mx
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The bulk minority carrier
lifetime inherent to this SiC
epilayer is much longer
than the average lifetime
measured on a
small-area device. 
This is due to large
perimeter surface
recombination.
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Bulk Minority Carrier Lifetime Extraction
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Indicates bulk Auger recombination insignificant compared to 
perimeter-governed SRH recombination.
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Discussion

This work demonstrates by example that perimeter surface recombination can
significantly impact SiC bipolar device electrical characteristics via
reduced effective minority carrier lifetimes.

• Greater impact on smaller (IC) devices than larger (power) devices.

• Lifetime reduction likely to be exacerbated by “multi-finger” or “multi-cell”
geometries that increase effective perimeter-to-area ratio.

• Possible contributing factor to experimental observations of:

- Low current gains (< 20) in SiC BJT’s produced to date.

- SiC pn diode current densities below theoretical predictions.

- Fast switching response of SiC pn diodes and thyristors.

Development and optimization of appropriate SiC surface passivation and
junction termination technologies could reduce or eliminate lifetime-limiting
role of surface recombination in SiC bipolar devices.
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• Potential impact on n- or p-type 4H- and 6H-SiC at all doping densities (?).

• Effect present in ion implanted or heavily compensated SiC junctions?

Discussion (cont.)

Figure from
Janzen & Kordina,
ICSCRM-95 p. 657.

τp Bulk = 0.7 µs
Linkoping U.
6H-SiC
PL Decay Data

A = 8.1 x 10-3 cm2

A = 3.1 x 10-4 cm2

NASA
4H-SiC
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Summary

Pulse testing reveals very important device behaviors not observed
          by conventional DC and RF testing.

• reliability

• switching speed

• current (density) rating

Observed behaviors directly impact SiC power device

Pulse testing should play an important role in SiC power device
          development and qualification.


